1

8
3

文字

分享

1
8
3

花粉揭秘:黑死病災情,歐洲各地很不一樣

寒波_96
・2022/02/21 ・4340字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

14 世紀中葉,歐洲各地陸續爆發鼠疫。瘟疫在當時的歐洲並不稀罕,可是這回實在嚴重,大量人口慘遭消滅,後世稱之為「黑死病」。疫情主要發生在公元 1347 到 1352 年,有些學者估計令歐洲在短期內減少 30 到 50% 人口,或許高達 5000 萬人之多。

一項新上市的研究根據花粉分析,卻得到結論:黑死病對歐洲各地的影響差異不小,有些區域確實大受打擊,但是有些地區輕微得多。我們該怎麼解讀這些研究呢?

受到義大利黑死病爆發為背景的《十日談》啟發的畫作。圖/wiki 公有領域

瘟疫殺死歐洲一半人!真的嗎?

黑死病的病原體是鼠疫桿菌(Yersinia pestis),可藉由老鼠和跳蚤輔助傳播。近年來由遺骸取得古代 DNA 的研究大行其道,令我們得知超過五千年前,便有人感染鼠疫桿菌。鼠疫桿菌能搭乘跳蚤便車,關鍵在於 ymtYersinia murine toxin)基因,晚於四千年前的鼠疫桿菌皆已經具備。

歷史上三次大爆發:6世紀的查士丁尼瘟疫,14 世紀的黑死病,以及 19 世紀末的全球流行,人們面對的都是傳染力升級的細菌版本;除此之外,還有多次規模較小的流行。 遺傳變化有限的病原體,在不同時空的疫情差異很大。

-----廣告,請繼續往下閱讀-----

歷次鼠疫桿菌導致的疫情中,黑死病的衝擊最大,有些研究甚至認為它消滅當時歐洲 50% 人口。這類死亡率的評估,主要來自歷史資料,如文書、稅務等紀錄;然而,這類資訊來源未必準確,有時文字會誇大不實,和實際數字有所差異。

還有一點侷限在,歷史資料主要紀錄人口聚居的城鎮,可是黑死病那個時候,歐洲超過 75% 人住在城市之外。人擠人的城市碰上鼠疫這類傳染病,通常受害較大,所以根據城市評估而得的結果,也許會高估瘟疫的危害。

另一方面,不同地區的受災程度很可能不同,就像正在進行的 COVID-19(武漢肺炎、新冠肺炎)疫情,遺傳上相同的病毒重擊秘魯,對澳洲的傷害卻相對有限。而黑死病也是如此,既有資料已經足以看出,相比於義大利深受打擊,波蘭更加輕微。幾處地區的狀況,不能擴大代表整個歐洲。

概念:在黑死病死亡率低的地區,農耕不太受到影響;死亡率高的地區則影響較大,產業轉為畜牧,甚至是恢復野生狀態;這些植物變化會反映在沉積物中的花粉。圖/參考資料 3

花粉大數據

要評估黑死病這類歷史大事件的影響,沒有一種理想辦法,一定要從不同方面尋找證據切入、互補,而環境變化可以作為切入點。突然爆發的疾病,導致大量人口死亡之後,也將造成經濟與社會的動盪,可想而知,自然環境也會受到牽連。

歐洲各地花粉的取樣地點。圖/參考資料 3

新發表的研究選擇以花粉作為指標,探討黑死病的影響,還創造一個看似 fancy 的新名詞描述:「大數據古生態學(big data palaeoecology,簡稱 BDP)」,反正大數據就是那樣。

概念是,受到黑死病負面影響愈嚴重的地區,人類活動會減少愈多,可以由花粉變化看出。具體樣本來自歐洲各地 261 處遺址,一共 1634 個沉積層樣本;年代介於公元 1250 到 1450 年,大致涵蓋黑死病發生之前到之後的各一百年,也就是前後約 4 代人。短時間內大量人口死亡,影響可能延續數代。

-----廣告,請繼續往下閱讀-----

不同植物會生成不同花粉,有些花粉落到湖泊等環境,變成湖底的沉積物,有機會保存下來,成為歷史切片的見證。而人類活動影響環境,使得植物生態有別,便會留下不同的花粉組合。

例如農耕發達的地區,會留下大量農作物的花粉,畜牧業普及區則會是另一種風貌;若是人口減少令農牧活動降低,野生植物的花粉便會增加,不同階段又會生長不同野生植物。

地段,地段,地段!

新的分析思維看似很有道理,但是能相信嗎?研究者首先分析資訊最豐富的兩處地點:瑞典、波蘭。許多證據表示黑死病過去後,瑞典慘遭打擊,波蘭反而明顯成長;倘若花粉呈現的狀況一致,便說明這套分析是可靠的。結果花粉分析順利通過考驗。

波蘭和瑞典的比較,瑞典在黑死病之後明顯衰退,波蘭則否。圖/參考資料 3

花粉分析擴大到歐洲全境,最肯定的結論是:各地差異不小。黑死病前後,一些地區差異有限,有些甚至逆風高飛;農牧活動減少最多的地區位於斯堪地那維亞(北歐)、法國、德國西部、希臘、義大利中部。

有個假設是:瘟疫使人口減少以後,產業可能由勞力密集的農耕,轉向較不需要人力的畜牧。但是這回研究指出,所有農耕下降的地區, 畜牧也跟著減少;唯一例外是德國西南部,畜牧反而增長。

考察文獻得知,義大利、法國深受黑死病危害,這也反映在當地的花粉中,證實歷史紀錄的準確。農業開墾往往是森林的敵人,黑死病過後,義大利的森林甚至重新蓬勃復育;慘烈至此,難怪有薄伽丘《十日談》的誕生。

然而不少地區的農牧活動,黑死病前後的差異有限,或是顯著成長,像是伊比利、愛爾蘭,以及中歐、東歐多數地點。這些分析指出黑死病對歐洲各地的影響有別,整體死亡率大概沒有 50% 那麼誇張。

歐洲各地在黑死病前後的變化:穀物、畜牧、植被演替。圖/參考資料 3

其實還是不清楚黑死病的死亡率

該如何看待上述論點呢?花粉分析有優點,也有缺點。一如文字、稅務等切入方向,花粉也有自己方法學上的侷限。它能告訴我們歐洲各地的死亡率不均值,卻無法真正評估死亡率高低。

-----廣告,請繼續往下閱讀-----

根據花粉組成在不同年代的相對變化,可以推論當地農牧活動的改變,卻不直接等同於人口的死亡程度。

一個地區在黑死病後一段時間,農牧活動明顯增長,不見得意謂瘟疫時沒有死很多人,也可能是恢復速度很快,或是還有黑死病以外的其他因素。

也要注意這兒的評估是相對的,某地相對的受災比較輕微,不等於災情不嚴重。一個地區在幾十年的時段內,如果損失 30% 人口當然是大災難,但是就算死亡「只有」5%,也不可能馬照跑,舞照跳。

歐洲各地在黑死病前後的變化統整,偏紅色為衰退,偏綠色為成長。圖中名號是當時的政權疆域。圖/參考資料 3

評估大瘟疫更廣泛的社會影響

儘管無法準確判斷死亡率,花粉能評估傳染病對社會更廣泛的影響。黑死病這類大瘟疫,不是只有鼠疫桿菌殺死多少人而已,還會牽連更廣泛的社會運作,累積間接傷害。

即使是一個較小的地理範圍,受災程度也可能有內部差異,如城鎮中心及其周圍的郊區、鄉村。沉積物中的花粉,是一個地區一段時間內的集合紀錄,似乎較能避免城鄉差距的影響。

有學者認為,黑死病過後一個地區之所以沒有衰退,也可能是外地人口填補所致,故質疑新研究的論點。就算真是如此,新遷入的人口也是來自歐洲其他地方,同樣支持新論點的大方向:歐洲各地受災程度有異,並非每處一樣嚴重。何況過往公認疫情嚴重的地區,新分析中也看得出來。

-----廣告,請繼續往下閱讀-----

有趣的是,一項 2019 年發表的研究在檢視多重證據後,也認為查士丁尼瘟疫的災情言過其實,不如過往認知的那麼嚴重。提醒各位千萬不能忽略「沒有那麼嚴重,跟不嚴重是兩回事」。

花粉無法回答的問題是:黑死病為什麼在各地影響有別?有人推測是鼠疫桿菌的品系不同,在西歐的殺傷力較強,東歐較弱。但是此一論點缺乏遺傳學、病理學的證據。

2019 年底至今的全球瘟疫清楚告訴我們,遺傳上一模一樣的品系,在不同國家的傳播與傷害天差地別,涉及許多複雜的因素。黑死病比當下冠狀病毒造成的疫情嚴重很多,基本道理大概還是一樣的。

延伸閱讀

參考資料

  1. Susat, J., Lübke, H., Immel, A., Brinker, U., Macāne, A., Meadows, J., … & Krause-Kyora, B. (2021). A 5,000-year-old hunter-gatherer already plagued by Yersinia pestis. Cell Reports, 35(13), 109278.
  2. Spyrou, M. A., Tukhbatova, R. I., Wang, C. C., Valtueña, A. A., Lankapalli, A. K., Kondrashin, V. V., … & Krause, J. (2018). Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nature Communications, 9(1), 1-10.
  3. Izdebski, A., Guzowski, P., Poniat, R., Masci, L., Palli, J., Vignola, C., … & Masi, A. (2022). Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nature Ecology & Evolution, 1-10.
  4. Black death mortality not as widespread as believed
  5. Did the ‘Black Death’ Really Kill Half of Europe? New Research Says No
  6. Mordechai, L., Eisenberg, M., Newfield, T. P., Izdebski, A., Kay, J. E., & Poinar, H. (2019). The Justinianic Plague: an inconsequential pandemic?. Proceedings of the National Academy of Sciences, 116(51), 25546-25554.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

1
1

文字

分享

1
1
1
經濟重要還是環境重要?明朝末年發生了什麼事?氣候如何影響國家?——《價崩》導讀
衛城出版_96
・2024/05/07 ・4105字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

眼皮底下的事實:環境史研究者看《價崩》

洪廣冀(臺灣大學地理環境資源學系副教授)

著名的漢學家卜正民以如下段落為《價崩:氣候危機與大明王朝的終結》一書定調:

生活在這個時代,我們彷彿逃不出莫測變幻的手掌心。變化讓人這麼痛苦、氣餒,為了安慰自我,我們便告訴自己:當代的生活特徵就是接連不斷的變化,正是這種不穩定,讓世界變得比以往更複雜。

他告訴我們,作為一個「長壽之人」,「過去十年來,氣候變遷、物價通膨,以及政治豪奪的速度與規模」,他認為也是前所未見。只是,作為一個歷史學者,他還是想問,若我們放大時空的尺度,當代人在過去十年來經歷的變化,真的是前所未見嗎?他的答案是否定的。在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。

在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。
圖/unsplash

藏在眼皮下的事實是什麼?小冰期如何發生?

一六四○年代初期的中國發生什麼事?這便是卜正民試圖回答的問題。他反對傳統史學的兩大見解:一者是訴諸人禍,即訴諸當時宮廷內的派系鬥爭,統治階層道德淪喪,導致民不聊生;二者是訴諸十六至十七全球的白銀貿易,即當時從美洲與日本湧入中國的白銀,造成物價波動與社會不安。卜正民認為,訴諸人禍與貿易會讓我們看不見「藏在眼皮底下的事實」:小冰河時期(簡稱小冰期)。

-----廣告,請繼續往下閱讀-----

廣義地說,小冰期是從十四世紀至十九世紀初期的地球寒化現象,氣溫平均掉了攝氏兩度。乍看之下,攝氏兩度的溫差或許微小,但對作物而言,這樣的溫差已經足夠讓作物減少一次收成,或根本無法收成。再者,必須注意,兩度的溫差是「平均」,即可能是極熱與極寒的氣溫交錯變化造就此兩度溫差。這確實也是在小冰期中發生的事。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。影響所及,所謂「聖嬰-南方震盪現象」(El Niño-Southern Oscillation, ENSO,即傳統上所說的「聖嬰現象」加「反聖嬰現象」)變得格外激烈,乾旱、水災等極端氣候頻傳。不僅如此,地球科學家也指出,小冰河期也是火山活動格外頻繁的時期。火山噴出的煙塵,遮蔽了太陽輻射,更加速了地球的寒化。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。
圖/unsplash

小冰期的起因為何?目前普遍接受的見解是太陽活動改變。此外,也有研究者指出,這與所謂歐洲人「發現」新大陸有關。受到所謂「哥倫布大交換」的衝擊,美洲原住民大量消失,森林擴張,吸收大量二氧化碳。眾所周知,二氧化碳是溫室氣體;二氧化碳濃度的減低,讓大氣保溫的能力下降,與前述太陽活動與火山噴發的效果耦合,讓寒化成為不可逆的過程。總之,我們現在已經知道,地球是個混沌系統,牽一髮不只動全身,甚至整個身體都會分崩離析。

回到《價崩》這本書。卜正民指出,明朝的存續時間(一三六八至一六四四年)即落在小冰期,並成為明朝覆亡的主因。他將小冰期之於明朝的影響分為六個泥沼期:一、永樂泥淖期(一四○三年至一四○六年)。二、景泰泥淖期(一四五○年至一四五六年)。三、嘉靖泥淖期(一五四四年至一五四五年)。四、萬曆一號泥淖期(一五八六年至一五八九年)。五、萬曆二號泥淖期(一六一五年至一六二○年)。六、崇禎泥淖期(一六三八年至一六四四年)。

-----廣告,請繼續往下閱讀-----

永樂泥淖期欠缺災荒記載,景泰泥淖期以饑荒收尾,嘉靖泥淖期氣候異常乾冷,萬曆一號泥淖期爆發饑荒、洪水、蝗災與大疫,「人民相食,枕籍死亡」;萬曆二號泥淖期的乾旱與水災頻繁,饑荒再度爆發,「朝廷賑濟的請願如潮水湧來」。崇禎泥淖期是明代乃至於「整個千年期間最慘痛的七年」,「米粟踊貴,餓殍載道」。一六四四年四月末,闖王李自成兵臨北京,致書要求崇禎帝歸順。崇禎不從,在命皇后、貴妃與女兒自盡後,他爬上皇居後的煤山,自縊身亡。李自成稱帝後,滿人入關,將中國納入大清國版圖。

不可忽視的幽靈?拔除合理征服者的解釋,明朝滅亡原因還有哪些?

如此的歷史解釋是否會流於環境決定論?卜正民的回答是:「如果環境決定論的幽靈就在門外徘徊,我也不會在分析時將其拒於門外。」那麼,是什麼讓寫出《縱樂的困惑》、《維梅爾的帽子》等名著的歷史學者相信環境的決定作用?答案就是糧價。

卜正民先生像。
圖/wikipedia

以他的話來說,「太陽能與人類需求的關係,是透過糧價調節的。從景泰年間到崇禎年間,糧價在五次環境泥淖其中激增,每一次都把價格多往上推一截,這樣的事實也說服我必須採用氣候史的大框架。」卜正民表示,「一旦經濟體仰賴太陽輻射為能源來源,那麼無論大自然是幽而不顯還是顯而易見,都必然是社會或國家生命力的決定因素。」

在結語「氣候與歷史」中,卜正民再次反駁那些把明朝覆滅推給「失德」的見解。他認為,這種論調是「合理化明清兩朝遞嬗的過程」,且「編出這種敘事並為之背書的,就是征服者」。他強調,「明朝的滅亡固然不能推給災荒糧價,但講述崇禎末年重大危機時不把氣候因素納入考慮,那簡直就像莎士比亞所言,宛如癡人說夢,充滿著喧譁與騷動,卻沒有任何意義。」

-----廣告,請繼續往下閱讀-----

然而,不至於將環境決定論「拒於門外」是一回事,認為社會變遷就此被環境「決定」,又是另一回事。卜正民並不認為,面對氣候因素帶來的種種挑戰,明朝各級官員只能雙手一攤,感嘆天要亡我,不做任何努力。就如其他生活在小冰期的人們一般,卜正民認為,明朝人建設基礎設施、育種、建立制度、開發新科技與控制生育力等;但問題是,一六三○年代晚期的種種災害,並未催出社會的適應力,反倒是摧毀其適應力。

拜此時勃發的火山活動與激烈的聖嬰-南方震盪現象「之賜」,不論是政府還是市場,都變不出糧食。卜正民認為,至少在前五個泥淖期,明朝人還是表現出相當的韌性,努力予以調適。然而,進入崇禎泥淖期後,春夏乾冷,田地龜裂,運河無水。當每公斤的米得需要兩千五百公升的水,而老天爺就是不願意降下一滴雨時,糧食供應體系就此崩潰,連帶把物價與政治體系拖下去陪葬。

是誰忽略了眼皮底下的事實?這段歷史帶給我們什麼警訊?

回到卜正民所稱的「眼皮底下的事實」。我們要問,是誰忽略了這項事實?誰是這對眼皮的擁有者?卜正民的答案有二。一則是以研究社會、政治與環境變遷的人文社會科學研究者。以小冰期的相關研究為例,他表示,當他開始研究明代中國糧價變異與氣候變化之關係時,驚訝地發現,「其他地方的環境史對糧價幾乎不提」。與之對照,精通糧價的歷史研究者,如不是太快地把糧價理解為「公平交易」的指標,便是視之為社會關係的一環,忽略了糧食必得是在特定的環境條件下孕育出來的。

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。
圖/unsplash

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。然而,卜正民的分析告訴我們,即便明代中國離現在相當遙遠,所謂的小冰期至少也是一百五十年以上的事,但物價恐怕還是可作為某種氣候指標。換言之,若人們以關心物價的熱誠來關心環境,面對當代的環境危機,說不定人們多少可找出個解方。

-----廣告,請繼續往下閱讀-----

此外,讓人心生警惕的是,卜正民告訴我們,小冰期多少是個漫長的地球系統變化。小冰期本身並未造成明朝衰亡,是相伴的極端氣候摧毀了明代社會的韌性與調適。他也認為,面對小冰期、火山噴發與聖嬰-南方震盪現象誘發的極端氣候,從後見之明來看,明朝人也做了他們可以做的,但也只多苟延殘喘了七年,且還是生存條件都被剝奪、生活尊嚴都被否定的七年。

那麼,當人類誘發的氣候變遷可能已加劇了聖嬰-南方震盪現象,讓去年(二○二三年)夏天成為有紀錄以來地球最熱的夏天,而極端氣候彷彿成為日常,人類還有多少時間可以調適?如果說明朝多少是被地球系統的正常運作摧毀,當今地球系統的異常,是人類自己造成的,數百年後的歷史學家,在回顧這段歷史時,恐怕無法如卜正民對待明朝人一樣地寬厚,只能說這是咎由自取。諸如此類的思考,都讓《價崩》有了跨越時代的現實意義。

畢竟,明朝人不是外星人,他們跟我們都生活在同一個地球上。

——本文摘自《價崩:氣候危機與大明王朝的終結》,2024 年 05 月,城出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
衛城出版_96
4 篇文章 ・ 4 位粉絲
"每個人心中都有一座城。每個人在心裡攜帶著文明的種子。 守衛讀者心中之城,與文明的生命力。"

0

0
0

文字

分享

0
0
0
批評反而促成發展?科學化中醫和宋朝佛儒交融類似?——《非驢非馬》
左岸文化_96
・2024/04/26 ・3068字 ・閱讀時間約 6 分鐘

「雜種醫」的挑戰

余巖在一九三二年出版《醫學革命論文選》第二版之時,新版序的開場白就敘述了朋友對他的氣憤埋怨。他們說:

近年外面半新半舊非驢非馬的醫說,橫行得了不得。這點狡獪都是你教訓他們的。你若不去向他們攻擊,他們永遠不會變遷。舊的索性舊,新的索性新,倒是界限分明,容易解決。⋯⋯你拚命攻擊舊醫,結果是教訓他們尋出一條生路。

余巖先生像。
圖/wikipedia

在一九二九年的衝突之後,許多批判中醫的人都注意到一個令他們毛骨悚然的現象:一夕之間,出現了一種「非驢非馬」的雜種醫。在很短的時間裡,雜種醫就在醫界大行其道,而之前這種混種現象只盛行於商業界的藥品市場而已。雖然抱持第一與第三立場的人對於中醫科學化的意見相反,但他們都把陸淵雷與譚次仲的方案抨擊為「非驢非馬」。

為何被譯為「雜種醫」?

在此,我想清楚說明為什麼把「非驢非馬醫」翻譯為「雜種醫」(mongrel medicine),而不是聽起來比較正面的「混種醫」(hybrid medicine)。第一,兩者間有一個重要的不同之處,就在於「雜種醫」是當年的歷史行動者所使用的概念。當年批判中醫的人士把「非驢非馬醫」等同於「雜種醫」,因爲他們想強調這種醫療是一個背叛了父母的雜種,是對兩個純種醫學傳統的雙重背叛。

這樣強烈的負面意涵便引出我的第二個論點:作為歷史行動者的概念而言,當年沒有任何中醫師會自我標榜為「非驢非馬」,「非驢非馬」是中醫批評者強加在他們身上的一種貶抑性的標籤。相較於「雜種」與「非驢非馬」所帶有的強烈的負面意涵,「混種性」(hybridity)這個後殖民概念的功能剛好相反,它強調「後殖民文化的混種性是一個優點,而不是弱點。」我想傳達的訊息卻正是混種的負面意涵:對於那些企圖匯通中西醫的人而言,他們必須承受對手加諸己身的羞辱與限制,被對手定義為「雜種」。為了傳達「非驢非馬」一詞的貶抑與羞辱,我決定將其意譯為「雜種醫」。

-----廣告,請繼續往下閱讀-----
對於那些企圖匯通中西醫的人而言,他們必須承受對手加諸己身的羞辱與限制,被對手定義為「雜種」。為了傳達「非驢非馬」一詞的貶抑與羞辱,我決定將其意譯為「雜種醫」。
圖/unsplash

備受罵名,仍要追求中醫科學化的原因為何?

面對來自雙方的攻擊,陸淵雷決定在那份備受爭議的中醫科學化提案當中,將接納雜種醫列為五項前提之一:「故整理國醫藥學術,引用科學原理時,不任受破壞國粹之名。」在此陸淵雷清楚表示不認同將中醫視為「國粹」而保存其本真性(authenticity)。

這是一項重要的證據,顯示至少對陸淵雷而言,國醫運動不當被等同為一種文化民族主義運動。他特別提及儒學與佛教在宋朝(九六○ — 一二七八)成功融合的例子,而主張中醫科學化是性質接近的事業,是以一種大膽而富有創意的方式來融合中國與外國文化。就這個意義上而言,像陸淵雷這樣的人士不僅發動了中醫科學化方案,更心甘情願地承受論敵貼在他們身上的貶抑性標籤,因為他們追求的目標不是保存中醫既有的樣貌,而是要發展出國醫館所揭示的那種新生的混種醫。

陸淵雷提及儒學與佛教在宋朝成功融合的例子,而主張中醫科學化是性質接近的事業,是以一種大膽而富有創意的方式來融合中國與外國文化。
圖/ wikipedia

余巖的友人責怪余巖協助創造了這種雜種醫。他們是對的。雜種醫之所以會興起,就是為了回應余巖和其他中醫批評者所倡議的醫學革命。這並不是說在余巖對中醫提出抨擊之前,不曾有人試圖融合這兩種醫學型態──唐宗海就是一個明顯的先例。重點是,雜種醫之所以突然間變地那麼值得追求、那麼引人痛毀極詆、那麼危機四伏,這一切都源於人們堅持要以科學方法整理中醫──換句話說,就是中醫科學化。有史以來第一次,當中醫師想像中醫與西醫的關係之時,他們無可逃避地必須共同直面科學的概念。

雜種醫與中醫科學化的關係?

雜種醫與中醫科學化之間,有一種相互建構與壓制的辯證關係。這兩者的關係具有相互建構性,因為中醫師會想追求雜種醫這種古怪的東西,完全是因為國民黨國家提倡中醫科學化,並強迫抗爭雙方以其作為停戰條件。正是這個科學化的目標,迫使中醫師在改革中醫時認真看待科學的概念以及相關的現代性論述──例如余巖對於中醫的三分法。就這個意義上而言,他們的改革體現現代性的特徵,因此截然不同於由唐宗海為代表的那種前現代式的匯通中西醫。

-----廣告,請繼續往下閱讀-----

另一方面,這兩者之間的關係也具有壓抑性,因為正是科學的概念使人難以想像中醫與生物醫學之間能夠經由跨種雜交而產生有意義的成果。單純想像把兩種醫學型態混合起來,或許不需要擔心會產生怪物。但若是想像將科學與異己的他者進行跨種雜交,感覺上幾乎是褻瀆神聖。由於大家都覺得這是一個無法想像的作法,無怪乎批評者將這種新式醫學描述為「非驢非馬」。

中醫師會想追求雜種醫這種古怪的東西,完全是因為國民黨國家提倡中醫科學化,並強迫抗爭雙方以其作為停戰條件。正是這個科學化的目標,迫使中醫師在改革中醫時認真看待科學的概念以及相關的現代性論述。
圖/pexels

就像那無法繁殖後代的騾,雜種醫雖然表面上看來充滿活力,卻絕對不可能長久存續,無法成為一個富有生命力的活著的傳統(living tradition)。正因為這種醫學廣受大眾歡迎,反對者覺得必須利用雜種醫這個貶抑性的概念,以提醒眾人逾越界線的危險,使人們產生強烈的負面情緒。總而言之,就是因為論爭雙方都接納中醫科學化方案,是以雜種醫才會變成一個廣受中醫師支持的、值得追求的、卻又沒有希望成功的方案;另一方面,也變成西醫師眼中巨大的威脅。

結論

西醫師為何強烈地偏好「中醫科學化」這句口號,而不是「以科學方法整理中醫」?關鍵就在防止雜種醫。由於這句口號包含了「科學化」這個在地發明的概念,因此也就把我們帶回了本章一開頭提出的那個問題:在一九三○年代初期的中西醫論爭中,中醫科學化方案做為一股關鍵歷史力量,究竟發揮了什麼樣的功能?最直白的答案就是,將科學轉化為一個動詞(科學化),其實是最有效的方式來展示世界上存在著一種同質性的實體叫做科學。

如果科學不能被理解為一種同質性的單一實體,那便難以想像將某個東西「科學化」究竟是什麼意思。更重要的是,當人們習以為常、不假思索地使用「科學化」這個動詞時,大家的行為便預設並且強化了一個想法:科學及其對反(中醫)是兩個可以清楚辨識的實體,就像具體的物品一樣真實。

-----廣告,請繼續往下閱讀-----

——本文摘自《非驢非馬:中醫、西醫與現代中國的相互形塑》,2024 年 02 月,左岸文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
左岸文化_96
39 篇文章 ・ 11 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。
OSZAR »