5

8
1

文字

分享

5
8
1

當 AI 的「深度學習」形成偏見,法規該如何遏止傷害?

科學月刊_96
・2022/01/03 ・3732字 ・閱讀時間約 7 分鐘

  • 文/廖英凱|非典型的不務正業者、興致使然地從事科普工作、科學教育與科技政策研究。對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心理史學。

Take Home Message

  • AI 雖然能協助遏止違法或侵權的言論,但一般大眾卻無法得知其評斷的機制,已於無形中造成傷害。
  • AI 的資料庫誤差,將造成演算法對文化或族群產生偏見等;而深度學習的演算法因處理龐大的資料,常使研究者或運用 AI 的機構無法理解與回溯 AI 的決策原因。
  • 歐盟、美國、聯合國等組織已相繼研擬 AI 的規範與監管方式。
  • 臺灣仍須再制定 AI 相關的監管辦法,以因應科技的發展及變遷。

「你今天被祖了嗎?」

眾所皆知目前社群網路最大的平台臉書(Facebook),為遏阻違法或侵權的言論,會判定某些言論違反其「社群守則」而隱藏。不可否認,違法與侵權言論在社群網路上造成了嚴重的傷害,不過有時候這些隱文的原則,似乎與政治或特定議題有關。時不時也有朋友提到,一則再平凡不過的貼文或照片,卻莫名其妙地被宣告違反社群守則。於是乎在去(2021)年時,網友們開始把臉書創辦人祖克柏(Mark Zuckerber)的姓氏,變成了諷刺臉書封鎖文章標準混亂的話梗:你被「祖」了嗎?

想當然爾如臉書等社群媒體,是仰賴著演算法自動判斷一則貼文是否違規。除了針對文字與圖片的內容分析以外,其他例如被檢舉的數量、帳號的活躍程度、帳號的發文模式、商業價值等,都成為演算法評估一則貼文是否違規的依據,彷彿法官在定罪犯人時不只依據犯罪行為,也會權衡犯人及其社會狀態一樣。然而,我們看得到法官的決策過程與理由,但卻從來沒有機會搞清楚,到底演算法發生了什麼事情,才會宣告一則平凡的貼文違規。

雖然大家平常遇到這種貼文被刪的情況,通常也就是重新打篇文章貼個圖發發牢騷,就這麼過去了。但這個時不時可見的神祕隱文事件,其實就是我們生活中,人工智慧(artificial intelligence, AI)已經持續帶來隱性傷害的頻繁案例。

-----廣告,請繼續往下閱讀-----

AI 的傷害跟以往想像的不一樣

自工業革命以降,人類其實蠻迅速地就提出對科技發展副作用的深層反思。例如人類史上第一部科幻作品,1818 年由英國作家雪萊(Mary Shelley)所著作的《科學怪人》(Frankenstein),即是以一個具有擬人思維的人造生命為主角的科幻驚悚作品。伴隨著機器的發展,1956 年達特矛斯會議(Dartmouth Summer Research Project on Artificial Intelligence)上,與會專家提出「artificial intelligence」一詞,認為機器的發展將可像人一般具有學習、理解、適應的能力。

隨著 AI 技術上的演進,人們對 AI 的樂觀與悲觀態度,也愈發分歧。對於 AI 發展所帶來社會的影響,依其態度可以分為:對科技抱持樂觀者,相信「強 AI」的問世可以使電腦與人有相同甚至超越人類的思考能力,並為人類解決大部分問題,帶來更理想的明天,在電影動畫等作品中不乏這類理想的人工智慧角色;重視科技實用者,傾向認為 AI 是以輔助人類的角色,解放人類的勞力工作而能開創更多科技應用的可能;重視科技發展脈絡者,則認為 AI 只是科技發展中的一個流行詞(buzzword),只有尚在發展中,尚未充分掌握的技術才會被視為 AI。與科技領域相對,在人文社會領域中則較常出現對 AI 發展的反思,例如研究 AI 對人類勞力取代後所創造的弱勢衝擊;或更甚者認為強 AI 的不受控發展,將會導致人類文明的毀滅。這些不同立場的觀點,均揭示了人類看待 AI 對社會影響的多元與矛盾預測。

儘管當代影視作品和學術研究,都對 AI 會造成什麼樣的傷害有興趣,但 AI 帶來的傷害早已出現多年而默默影響著人類社會。2018 年在《自然》(Nature)期刊上的一則評論,介紹了一張身披白紗的歐美傳統新娘和印度傳統新娘的組圖,而演算法在看待兩張新娘照片時,會將前者判斷為「新娘」、「洋裝」、「女人」、「婚禮」等,但將後者判斷為「表演」和「戲服」。在這個案例中,AI 或演算法設計本身其實並沒有獨鍾哪一種文化,但因為演算法的訓練來自於既有圖庫,而圖庫中的圖片來源和圖片的詮釋註記,與真實世界的樣貌出現落差,使人工智慧就如真人一般,憑藉著片面不完整的學習資料,產生了對族群與文化的偏見(偏誤),而演算法可能更無法自覺與反思自我產生的偏見(圖一)。

(圖一)由於 AI 只憑藉片面且不完整的資料進行學習,以婚紗為例,AI 只能辨識出傳統歐美的婚紗裝扮(左),卻難以辨識出不同文化的婚紗樣貌,例如印度傳統服飾(右)。(123RF)

除了資料庫的誤差而導致演算法對文化或族群的偏見以外,「深度學習」(deep learning)的演算法因處理龐大的訓練資料、分析資料,也常使研究者或使用 AI 服務的機構,無法理解與回溯 AI 決策的具體原因。例如亞馬遜公司(Amazon.com, Inc.)仰賴演算法全自動判斷大量受僱員工的工作狀態,並以此決定他們的績效與裁員與否。儘管這種做法能大幅縮減決策時間,並減少人資成本,但也因此發生數起亞馬遜員工因系統過失而被降低績效,或是員工績效良好卻被無故裁員,更申訴無門的矛盾事件。這與將 AI 應用於人資的初衷似乎有點相悖,演算法或許可以避免人為決策時,因涉及個人喜惡偏好而作出不公允的判斷,但卻也造成了另一種不公允也無從理解緣由的傷害。

-----廣告,請繼續往下閱讀-----

誰來規範 AI?

既然 AI 的傷害已然出現,自然也應有對 AI 的監管與規範機制。例如歐盟執委會(European Commission)在 2019 年 4 月公布「值得信賴的人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI),強調人工智慧應為輔助角色,尊重人類自主、避免傷害、維護公平、具有可解釋性,且能受到監管並回溯決策過程,以避免演算法的黑箱決策,作為歐盟成員國在訂定 AI 相關規範的上位依據。2019 年 5 月,經濟合作暨發展組織(Organisation for Economic Cooperation and Development, OECD),提出 AI 發展的原則應有永續精神以造福人類與地球,能尊重民主與法治、人權與多元性,兼顧透明度、課責機制等原則。美國白宮科技辦公室在 2020 年 1 月發布的「人工智慧應用的管制指引」(Guidance for Regulation of Artificial Intelligence Application),也強調衡量風險避免傷害、公平無歧視、透明度、重視科學實證、立法過程應兼顧公共參與等,作為美國政府各機關在訂定與人工智慧相關規範的指導原則。聯合國教科文組織(United Nations Educational Scientific and Cultural Organization, UNESCO)則在去年 11 月,發布《人工智慧倫理建議書》草案(Draft text of the recommendation on the ethics of artificial intelligence),作為會員國訂定 AI 相關法律與政策時,可依循的通用價值觀、原則和行動框架。

國際上重要的原則指引,也同等地體現在民意對 AI 治理的期待,臺灣師範大學教授李思賢、劉湘瑤、張瓅勻等人針對臺灣 1200 位民眾的調查發現,臺灣民眾對 AI 的應用最在意的是避免傷害,其次則是透明度與公平性,相對最不在意的是隱私。調查亦發現民眾明確偏好以公民審議和立法機關來制定嚴格傾向的規範,這反映了民眾對新興科技的擔憂與對透明治理的期待,也呼應了國際組織的指引方向(圖二)。

(圖二)AI 規範制定權則偏好。李思賢教授等人,調查國人對 AI 規範制定的偏好。發現國人無論對 AI 發展持保守態度或開放態度,均傾向以公民審議和立法機構來制定規範。

然而,國際上的重要指引與民調結果,卻也讓我國在相關規範的設計上略顯矛盾。例如調查研究顯示,雖然民眾最期待以「公民審議」和「立法機構」來訂定 AI 相關規範,但現今國內外相關規範的研擬與討論,仍是以由產官學組成的研究與應用社群為主,例如科技部自 2017 年起,開展多場 AI 倫理議題的研究計畫與論壇工作坊等,並於 2019 年 9 月提出《人工智慧科研發展指引》,明訂 AI 科研的核心價值與指引,使科研人員在學術自由與創新發展的同時,也能兼顧 AI 發展的方向。

但科技部並非產業的主責機關,所訂定的指引僅能提供科研人員更好的方向,對已產生傷害的業界應用仍然鞭長莫及。儘管 2018 年 11 月立法院曾通過初具 AI 倫理精神的《無人載具創新實驗條例》;2019 年 5 月,時任立法委員許毓仁等人也提出《人工智慧發展基本法》修法草案,作為政府兼顧人工智慧產業發展和倫理規範的法律基礎,但該草案的相關修法討論並未被積極延續,作為國家更上位看待 AI 發展的治理框架,於立法體制和公民審議機制中均尚未開展高強度的討論。

-----廣告,請繼續往下閱讀-----

AI 對今日生活的便利已無遠弗屆,而 AI 所帶來的傷害,雖微小、難以察覺,但也已經出現,對應的倫理指引與規範在國際也蔚成趨勢,但臺灣仍在牛步,或許國家在看待 AI 發展時,必須開始將這些規範視為迫切的基礎建設。

如同歷史上所有科技進展一般,科技帶來的進步與災變往往是隱性與持續的,直到人們已慣於新興科技的進步,發現科技的受害者已經出現,才驚覺世界已經完全改觀。

延伸閱讀

  1. James Zou and Londa Schiebinger, AI can be sexist and racist — it’s time to make it fair, Nature, Vol.559, 324-326, 2018.
  2. 人工智慧之相關法規國際發展趨勢與因應,https://www.ndc.gov.tw/nc_1871_31998
  3. 《人工智慧發展基本法》草案,https://pse.is/3w9rrf
  • 〈本文選自《科學月刊》2022 年 1 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 5
科學月刊_96
249 篇文章 ・ 3750 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----

0

1
0

文字

分享

0
1
0
一條 Type-C 線打天下!歐盟規範 13 類產品全面統一,2024 年 12 月底強制生效
宜特科技_96
・2024/12/30 ・3887字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自 宜特小學堂,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

2024 年底將至,歐盟立法要求 13 類電子產品將強制統一採用 USB Type-C 接口,將在 12 月底強制實施。對於消費者來說是一大福音,對於企業則是重大衝擊,隨著截止日期日益逼近,企業該如何確保自家產品有符合規範,並維持在歐盟市場中的競爭力呢?

點擊圖片收看影片版

早在 2022 年,歐盟就已正式發布有關通用充电器的修訂指令 Directive(EU) 2022/2380,除了筆記型電腦在 2026 年 4 月 28 日才開始適用以外,其他 12 類可充電無線裝置 ( Radio Equipment ),包括手機、平板、數位相機、耳機及耳麥、手持遊戲機、可攜式喇叭、電子閱讀器、鍵盤、滑鼠、可攜式導航設備以及入耳式耳機,從今年 12 月 28 日起,就須統一採用 USB Type-C 充電接口。

這大大提高設備之間的相容性,為消費者提供更方便的充電解決方案,也能減少電子廢棄物的產生。甚至英國政府也考慮比照歐盟規範,開始諮詢是否要求所有新電子裝置採統一充電標準。

歐盟納管的 13 類可充電無線裝置。圖/宜特科技

而歐盟境內將根據這一指令,所有銷售的相關電子設備都需要符合 IEC 62680-1-3:2021(USB Type-C® Cable and Connector Specification)標準。此外,對於充電電壓超過 5 伏特、電流超過 3 安培或功率超過 15 瓦的設備,則須符合 IEC 62680-1-2:2021(USB Power Delivery specification)標準,確保這些設備能夠快速充電,並在各種充電環境下維持高效運作。

-----廣告,請繼續往下閱讀-----

為了不讓OEM / ODM廠商面對新規範無所適從,2024 年 8 月底USB-IF(USB Implementers Forum,簡稱USB-IF)協會緊急推出符合 IEC 62680 測試規範的正式計畫(USB-IF Conformity to IEC 62680 (USB) Specifications Program),針對歐盟關注的 USB Type-C 裝置在「充電功能」上的要求,提供廠商一個簡便且具成本效益的測試流程。如此一來,大家對測試項目就有所依循,能確保自家產品符合規範。

本篇文章我們將火速解讀測項並分享已進行測試的實際案例,想進一步了解規範解讀,或是要帶領產品前進歐盟市場嗎?那就接著看下去吧!

為符合歐盟Type-C規範,USB-IF 公布的 IEC 62680 測試指南

USB-IF 從 IEC 62680(USB)規範繁複的測試項目中,針對歐盟對 Type-C 接口充電效能的要求,去蕪存菁定義了一組最基本的必要測試,測試內容可見 USB-IF 官網連結

Conformity to IEC 62680 測試規範解讀

歐盟Directive(EU)的指令(EU 2022/2380)是對RED(Radio Equipment Directive)2014/53/EU中 3.3(a) 條款的補充,主要確保 13 類無線充電設備統一使用 USB Type-C 接口。宜特整理出符合 IEC 62680 規範的三大測試項目,以便讀者更清楚了解如何達到最新的合規要求。

-----廣告,請繼續往下閱讀-----

USB Type-C 功能測試規範(USB Type-C Functional Test Specification):

此測試項目主要是檢查 USB Type-C 裝置是否符合 USB Type-C 規範要求。測試內容涵蓋多種不同的 USB Type-C 操作模式,包括:

1. UPF/DFP(Upstream Facing Port / Downstream Facing Port):

測試設備在擔任 Host 或 Device 角色時的功能和相容性。

2. DRP(Dual Role Port):

-----廣告,請繼續往下閱讀-----

檢查設備是否能在 Host 或 Device 角色間切換。

這些測試的目標是確保 USB Type-C 裝置能在不同設備間正確運作,並且符合電氣和計時要求,以建立穩定的功能連接。

USB 電力傳送合規性測試規範(Power Delivery Compliance Test Specification):

這部分的測試是確保 USB Type-C 裝置符合 USB Power Delivery 3.1 的規範要求,如果產品支援 Power Delivery,就需要執行這項測試,具體包括:

1. 電壓、電流、電力的要求:

-----廣告,請繼續往下閱讀-----

檢查設備是否符合 USB Power Delivery(PD)規範中定義的不同電壓與電流的要求。

2. 不同模式下的功能測試:

特別是在 PD2 Mode 和 PD3 Mode 下,測試設備的功能和向下相容性,確保設備能夠在不同的 PD 模式中正確運作。

3. USB Power Delivery (PD)

-----廣告,請繼續往下閱讀-----

確保設備能夠正確支持 USB Power Delivery SPR (Standard Power Range/標準功率範圍,簡稱SPR) 或 EPR (Extended Power Range/擴展功率範圍,簡稱EPR),管理電力交換和通信。

這些測試旨在確保 USB Type-C 裝置在提供電力時,能夠滿足規範要求,從而確保設備在實際使用中的安全性和穩定性。

USB 電源測試規範(Source Power Test Specification):

這些測試是用來驗證 USB Type-C 接口作為電源供應端時的各項功能。如果產品具備Source Power能力,就需要執行以下測試,測試內容包括:

1. 負載測試(Load Test):

-----廣告,請繼續往下閱讀-----

檢查設備在不同負載下的電壓和電流變化。

2. 過電流保護(Over Current Protection,簡稱OCP):

檢查設備在過電流情況下是否能夠啟動保護機制,防止損壞。

3. Multi-Port 裝置的電力分配和管理:

-----廣告,請繼續往下閱讀-----

對於具有多個 Type-C Port 的設備,測試其在多個 Port 同時使用時的電力分配和管理功能。

這些測試的目的是確保 USB Type-C 電源在實際使用中能夠安全、穩定、可靠地提供所需的電力,並且在多 Port 裝置的情況下,各個 Port 之間的電力分配和管理也符合規範要求。

案例分享

訊號測試實驗室工程師協助除錯(debug)。圖/宜特科技

宜特訊號測試實驗室透過符合 USB-IF 規範的測試儀器進行測試,並擷取過程中未通過的資訊,提供給廠商進行除錯後(debug)順利取得相關證書。以下分享兩個案例:

案例一 : 合規測試規範變動導致測試誤判的問題排查

在產品測試過程中,可能因為合規測試規範(Compliance Test Specification,簡稱 CTS)更動或是尚未定義,造成測試儀器誤判而未能通過測試。透過側錄的資訊(Trace or Log)檢查未通過的結果與 CTS 似乎有衝突,宜特訊號測試實驗室將此現象反應給儀器商進行討論,確認出真正的問題之外,亦會在每週和 USB-IF 協會的線上會議確認是否有類似問題已被提出工程變更請求(Engineering Change Request,簡稱 ECR),未來是否有機會修正為工程變更通知(Engineering Change Notice,簡稱 ECN),並進而修訂 CTS,減少廠商 debug 時間。

案例二 : 負載測試中 Vbus 電壓過低問題的分析與解決

進行負載測試時(Load Test),Vbus 過低且未在規範要求的時間內恢復到合適的電壓範圍,如下圖,若 Vbus 低於 4.75V(VSrcNew(min))且未能在 tSrcTransient 內拉回至 4.75V 以上。儀器就會判定產品未能通過負載測試,這種情況可能導致裝置無法正常工作。遇到這樣的情形,宜特訊號測試工程師會說明規範,讓廠商了解未通過的原因,協助對症下藥、縮短 debug 時間。

tSrcReady 後,Vbus 可以在 vSrcNew 和 vSrcValid 之間存在的時間不應超過tSrcTransient 所定義的時間限制。圖/USB-IF官網

當負載(load)高於或低於 60mA 時,Source 輸出電壓在應對負載瞬態變化時必須遵守以下規範(見下表):

1. 負載高於或等於60mA的情況:

Source 輸出電壓必須在負載瞬態變化後的 5 毫秒內,回到介於 vSrcNew 和 vSrcValid 之間的範圍內。

2. 負載低於60mA的情況:

Source 輸出電壓必須在負載瞬態變化後的 150 毫秒內,回到介於 vSrcNew 和vSrcValid 之間的範圍內。

當負載(load)高於或低於 60Ma 時,Source 輸出電壓在應對負載瞬態變化時的規範。圖/USB-IF 官網

因 Vbus 過低且未在規範要求的時間內恢復到合適的電壓範圍,因此儀器判定未能通過測試。紅線代表未通過的區段。圖/宜特科技

如何進行 USB-IF Conformity to IEC62680?

USB-IF 為了有效管理和追蹤 USB 產品設備,將審查所有提交的測試結果並提供正式的批准。OEM/ODM 廠商可將其 USB Type-C 產品提交至 USB-IF 授權的獨立測試實驗室(Independent Test Labs,簡稱 ITLs)進行正式測試。廠商需要先取得 Vendor ID(VID),VID 可以透過成為 USB-IF 會員或購買取得。有了 VID 後就能進入 USB-IF 網站中登錄產品,USB-IF 會分配給該產品一個 Test ID(TID)識別碼,用於追蹤該產品的測試和認證記錄,接著就能開始進行 Conformity 測試。通過測試的產品會被公開登錄在 USB-IF 網頁上的 IEC 62680 Conformity 名單中,並收到來自 USB-IF 證明產品符合 IEC 62680(USB)規範的通知信。

產品通過 IEC62680 的測試後,USB-IF 寄給廠商的正式通知。圖/USB-IF 官網

雖然 USB-IF Conformity to IEC 62680(USB)為 OEM/ODM 廠商提供了一個正式的測試途徑,以符合歐盟指令,但需要注意的是,這與完整的 USB-IF 認證計畫有所不同。USB-IF 認證計畫提供了更為全面的測試,不僅能證明產品符合歐盟對充電功能的要求,還能驗證其在數據傳輸、可靠性和互通性方面是否達到 USB-IF 的標準。通過完整認證的產品有資格使用消費者熟知且信任的 USB 認證標章,而僅通過 USB-IF Conformity to IEC 62680(USB)規範計畫的產品則無法使用該標章。儘管如此,該新計畫仍能協助 OEM/ODM 廠商快速測試其產品,進一步推動進入歐盟市場的進程。

宜特科技作為 USB Power Delivery(PD)正式認證的測試實驗室(ITL),已取得 USB-IF 最新的 Power Delivery 3.1 技術授權,並同時具備 USB4 V1 電氣測試(Electrical Testing)、USB 3.2 和 USB 2.0 產品認證測試的資格。這些授權能協助客戶進行各類 USB-IF 產品的認證測試,並幫助驗證 13 類 Type-C 可充電無線裝置是否符合 IEC 62680 標準,順利取得 USB-IF 符合性認證。如需要獲得 USB-IF 標章認證,宜特也提供完整的 USB 相容性測試,為產品提供更全面的保障。

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
15 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室
OSZAR »