0

1
0

文字

分享

0
1
0

善用分析工具 抓出半導體缺陷

宜特科技_96
・2025/05/29 ・3614字 ・閱讀時間約 7 分鐘

本文轉載自宜特小學堂〈如何利用表面分析工具,抓出半導體製程缺陷〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

半導體製程中的汙染可能導致失效,但能分析半導體表面汙染物的儀器五花八門,關鍵時機該選用哪種工具,才能快、狠、準抓出製程缺陷?

點擊圖片收看影片版

什麼是「表面分析」?

在半導體製程的研發與生產過程中,難免會產生極小、極薄的奈米級異物或汙染,這些微小的缺陷可能會造成元件電性異常,導致阻值偏高、短路、漏電,甚至是封裝階段的脫層或植球失敗。雖然常見的微粒異物可透過光學或電子顯微鏡檢測,但某些汙染層如表面氧化或微蝕殘留,僅僅只有數奈米厚,與原本材料性質不同,這些肉眼或顯微鏡看不到的異物分析,就必須依賴高精度的表面分析工具來追根究柢,找出問題根源。

各種表面分析工具,分別該在什麼時機點使用   

觀察表面高低起伏形貌與尺寸量測- SEM

掃描式電子顯微鏡(SEM)。圖/宜特科技

在一般材料分析應用中較為人熟知的掃描式電子顯微鏡(SEM),主要是觀察表面的高低起伏形貌或尺寸量測,藉由電子掃描樣品表面擷取二次電子的訊號來成像,也可以搭配 X 光能量分散光譜(EDS)探測器鑑別表面的元素成分。然而 EDS 所蒐集的,是來自於表面以下數百奈米深度的特性 X 光訊號,反倒在最表面幾個原子層數奈米厚度的汙染,卻是很難被偵測到的。

氧化、腐蝕或污染之奈米薄膜鑑定- AESXPS

歐傑電子能譜儀(AES)。圖/宜特科技

當 SEM-EDS 無法偵測到的表面汙染,就得仰賴奈米薄膜的檢測工具-歐傑電子能譜儀(AES)或 X 光光電子能譜儀(XPS),這兩種分析儀最常被用來檢測如氧化、腐蝕或污染的鑑定,甚至能搭配氬離子濺蝕的縱深分析技術,即可進行氧化或腐蝕層厚度的分析。

-----廣告,請繼續往下閱讀-----

下圖為典型 AES 分析 IC 鋁墊(Al pad)表面成分的定性分析結果。左圖的能譜分析顯示表面偵測到殘留的元素有 C、O、F 和Al;右圖則是縱深(Depth profile)分析的結果,可以觀察到各種元素的含量隨深度變化的分布情形,亦可提供預估氧化層或表層 F成分汙染的厚度,分別為 24nm 與 13nm。這類汙染可能來自鋁墊在開窗(Opening)製程中會使用 CF4 氣體進行乾蝕刻,或是存放時間過久導致的氧化腐蝕殘留,這是影響後續封裝打線接合品質的重要參考指標。

AES 分析 IC 鋁墊表面殘留成分與氧化層厚度的縱深分析。圖/宜特科技

此外,針對先進 3D 封裝製程,AES 的微電子束可用於分析 TSV導通孔,在蝕刻製程後側壁的殘留,及銅柱(copper pillar)製程中表面的氧化狀況,甚至能進行孔壁內部或直徑在數十微米以下的bump 進行極細微的表面殘留分析。

但由於激發源是使用電子束(Electron beam,在分析非導電材料時,可能會發生表面充電效應(Charging effect)現象,干擾歐傑電子訊號的擷取。AES 與 EDS 的量測深度不同,EDS 是可以在樣品表面鍍一層金屬來做導電,然而 AES 的樣品卻無法用同樣手法處理。因此,無法分析絕緣樣品是其最大的缺點。

非導電、大於十微米以上的樣品表面檢測- XPS

X 光光電子能譜儀(XPS)。圖/宜特科技

對於表面尺寸大於 10 微米以上的樣品,可採用 X 光光電子能譜儀(XPS)進行表面分析。XPS以 X 光作為激發源,分析範圍較大,適用於 30 微米以上的樣品,例如:IC 鋁墊、PCB 金墊、金手指、封裝用錫球及焊點等。

-----廣告,請繼續往下閱讀-----

對於非導電的樣品 XPS 也是極佳的表面分析工具。例如,IC 鋁墊周圍的絕緣護層 SiNx、PCB 銅線路外的絕緣綠漆,以及 RDL/UBM 製程線路外的 PI 或 PBO 絕緣層等,都可以透過 XPS 進行分析。下圖顯示在 PI 層上觀察到蝕刻後殘留微量的 Ti 金屬,這可能導致 bump 漏電問題,因此而成為在 UBM 製程觀察的重要指標。

XPS 分析 UBM 製程 PI 表面的成分,除了主要的 C、O 外,還有 Ti、Si 等金屬殘留。圖/宜特科技

由於 XPS 是透過觀察電子束縛能(Binding energy)來進行分析的技術,利用高分辨化學位移(Chemical shift)來判斷化學鍵結的型態。下圖為鋁墊經蝕刻製程後,表面生成了橢圓形汙染物,透過能譜化學位移擬合(Curve Fitting)分析,結果顯示束縛能分別對應 78.7eV 的 [AlF6]3-、76.3eV 的 AlF3 與 74.5eV 的微量 Al2O3,證實這三種化學態共存於汙染物中。

除了這類蝕刻製程的生成物分析外,XPS 也可以用於陶瓷薄膜材料的製程研究,利用擬合分析技術進行化學態鍵結比例的分析,為後續製程調整與改良提供參考依據。

X 光電子能譜分析 IC 鋁墊上腐蝕殘留物的化學鍵結態有三種,分別為(AlF63-、AlF與 Al2O3.。圖/Y.Hua et al., IPFA 2014

黃光/蝕刻製程等高分子有機化合物定性分析- SIMS

二次離子質譜分析儀(SIMS)。圖/宜特科技

另一種靈敏度更高的表面分析工具是「飛行時間式」二次離子質譜分析儀(TOF-SIMS),其主要採用「離子源」進行靜態(static)表面成份的定性分析。不同於一般磁偏式(Magnetic sector)SIMS 或 XPS 作動態(dynamic)縱深的定量分析,TOF-SIMS 是採用非連續性的脈衝式一次離子源,因此,轟擊樣品時產生的表面能與電荷量可大幅減少,再配合適當的電荷補償,非常適合用於絕緣有機材料的分析。

-----廣告,請繼續往下閱讀-----

若前述在 AES 或 XPS 定性分析的結果,顯示待測樣品含有 C、N、O 這類元素時,並且製程中可能涉及高分子有機材料。此時若需要具體了解是哪種有機化合物,就可以使用 TOF-SIMS 的質譜分析進行精確鑑定。例如:在黃光、蝕刻製程或清洗後的缺陷汙染,通常伴隨著有機溶劑或光阻等殘留,就非常適合使用 TOF-SIMS 來進行分析

除了上述關於表面污染的定性成份分析技術外,其它像是數個奈米厚度的超薄膜,亦可借助的表面分析儀器如原子力顯微鏡(AFM)、X 光繞射儀的 X 光反射(XRR)分析技術,進一步獲取樣品奈米表面形貌、粗糙度,或是厚度等的資訊,為製程開發與品質管理提供更完整的分析依據。(進一步閱讀:借力三大工具,精準量測樣品表面粗糙度

樣品該如何選擇適合的表面分析工具?一張表解決痛點!

當遇到形貌、外觀、顏色甚至電性都不同的各種樣品,該如何選擇正確的分析工具,或是先該從哪一個方式著手?由於每種儀器能夠承載的樣品空間並不固定,並且能夠分析的範圍也都相異。宜特表面分析實驗室準備以下圖表,讓您可以更清楚了解如何根據汙染物的預估深度尺寸以及希望觀察的濃度大小,來進一步了解分析流程。

假設發現的異物汙染無法用顯微鏡確認大小或尺寸,僅確定是局部異常變色,可以先使用 XPS 分析;若 XPS 分析結果是 C、N、O這三個元素,極可能為有機汙染。若要進一步鑑定是哪種有機物,就可以用圖表最末端的 FTIR 或 TOF-SIMS 分析鑑定,以確認汙染來源與成分。

-----廣告,請繼續往下閱讀-----
表面汙染分析儀器的選擇準則。圖/宜特科技

當您遇到難以判斷的狀況或是樣品尺寸不符的窘境,或是想要更清楚如何根據樣品尺寸、大小、汙染處選擇正確的分析儀器嗎?歡迎洽詢宜特官方Line帳號 或來信至 [email protected],我們將奉上一張精心製作的圖表,協助您更加了解表面分析工具。

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

宜特科技_96
14 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

OSZAR »