0

0
0

文字

分享

0
0
0

原來是大王具足蟲啊,還以為是女友邦提摩尼烏姆呢!這究竟是什麼神秘生物?

Lea Tang
・2019/08/09 ・2662字 ・閱讀時間約 5 分鐘 ・SR值 525 ・七年級

延伸閱讀:從基隆進港的深海活化石中,意外發現新種具足蟲!——專訪國立臺南大學副教授黃銘志

還記得《銀魂》裡,新八那迷人的女性朋友——「邦提摩尼烏姆」小姐嗎?

新八因為初吻被奪而突生的濾鏡技能,可以改變生物的外貌。圖/imdb.com

在《銀魂》的故事裡,「邦提摩尼烏姆」是一種妖怪麵包,於陰陽師篇中首度登場。作為比賽用食物的它,因長相怪異而讓人抗拒接近。不料在一場意外之中,新八與麵包接吻了。於是乎,可歌可泣的悲戀就此展開。

所以說「邦提摩尼烏姆」到底是何方神聖?

這是邦提摩尼烏姆小姐無濾鏡支援的觀眾視角。圖/vignette

根據《銀魂》中觀眾的描述,這種妖怪麵包有在外觀上有一些明顯的特徵:一節一節的身體和成對的足。撇除了像是意外被銲接上的禿頭人臉,它看起來就像某種類節肢動物。若是對節肢動物不甚熟悉,我們來稍微了解一下其定義:

節肢動物門(Arthropoda)為動物界中所屬物種最多的一門,主要由昆蟲綱、甲殼綱及蛛形綱等外骨骼動物所組成。正如其名,它的特點就是分節的肢體,和主成份為 α- 甲殼素的角質層。

那麼問題來了,這個戴上吶喊面具的麵包小姐,究竟是何方神聖?

原來是大王具足蟲啊,我還以為是女友呢

這裡還有一隻不是你女友的大王具足蟲。soure:深海ランデブー

大王具足蟲(Bathynomus giganteus)主要生活在大西洋深海。牠們的體長約 19-37 公分,和其它只有 1-5 公分長的等足目動物(Isopoda註1相比,著實是龐然大物。

-----廣告,請繼續往下閱讀-----
  • 註1:等足目,又稱等腳類、等足類。通常指體型較小的甲殼類動物,大多生活在水中。有七對大小及型態相似的腳,只有頭部有殼。
大王具足蟲(Bathynomus giganteus)體長約 19-37 公分,巨大的體型在深海動物中相當罕見。圖/wikimedia

1879 年在墨西哥灣,法國動物學家米奈(Alphonse Milne-Edwards)捕獲到第一隻雄性幼崽。這個消息,對當時少數相信「深海有生命」的科學家註2 而言,無疑是一大鼓勵。隨後在 1891 年,雌性幼蟲也被捕捉到了。

  • 註2:當時的英國科學界認為深海沒有生命;然而湯姆森(Charles Wyville Thomson)在 1873 年所提出的報告《The Depths of the Sea》卻持相反立場。

超吸睛的奇特外型

大王具足蟲有著由將近 4000 個平面小眼所組成的複眼和兩對觸鬚。除此之外,它身上七對關節肢中的第一對已進化為顎足——方便把食物送到顎處近食。

大王具足蟲的顎處。圖/BNPS.co.uk (01202 558833) Pic: Peter Willows

而在腹部的五塊鱗片(pleonites)各有著一對雙肢型附肢註3,則有助於水中行動。

稍微拉直看看它的腹面吧。圖/flickr
  • 註3:「附肢」是節肢動物體節上附屬肢的簡稱,通常用於行走。而附肢有兩種常見的類型:單肢型及雙肢型。前者肢體是由一串端點互相連接的肢節組成,而後者的肢體則先在某肢節上分叉成兩串,在由各串端點互相連接而成。此外,還存在三肢型甚至更多分肢的形態。

無人能敵的獨門絕活

大王具足蟲生活在 170-2140 公尺的大洋深處,食物來源極不穩定。圖/flickr

大王具足蟲一般呈現淡紫色,是深海環境中重要的食腐動物,如鯨魚、魷魚的屍體;有時它們會主動補食海參、海綿等行動較緩慢的海底動植物。然而深海的大洋環境卻不易生存。

-----廣告,請繼續往下閱讀-----

除了必須抵禦寒冷的水溫和極大的水壓,大王具足蟲還必須耐得了長期饑餓。

最有名的例子便是日本三重縣鳥羽水族館的大王具足蟲,在被捕上岸後因不明原因絕食了 5 年 43 天才死亡註4

  • 註4:日本在墨西哥灣 800 公尺處捕捉到的雄性成蟲。在絕食的第四年,大王具足蟲的體重僅掉了 12 克。

慎防暴食的育幼袋

大王具足蟲的繁殖季多在食物量較多的春天和冬天。成年的母體在性活躍期會長出一個育幼袋,並產下無脊椎動物中最大的卵。這個時候,蟲卵會被安置在育幼袋中度過孵化期。需要注意的是,若一個正在孵卵的巨足蟲媽媽吃太多,可能會導致蟲卵被膨脹的身體擠出育幼袋。

大王具足蟲的育幼袋。圖/王旬漁 臉書分享

當大王具足蟲從育幼袋中出來的時候,外型就像是成蟲的微型版。脫離幼蟲階段的它們,除了最後一對胸部附器外,幾乎都已發育完全。

成蟲和幼蟲。圖/王旬漁 臉書分享

吃貨小教室:品嘗初戀的滋味

雖然大王具足蟲的外貌容易嚇跑一些對陸地上節肢動物有陰影的人,但只要說到吃,人類永遠沒有極限。老饕們除了日本人(毫不意外)和香港人外,根據英文維基 2019 年的最新資料,台灣北部的沿海餐廳有煮沸的大王具足蟲可以下飯(沒騙你,自己上網找)。

-----廣告,請繼續往下閱讀-----

↓一樣附上考驗心臟的影片,這是日本最常見的大具足蟲註5,請各位自行斟酌觀看↓

  • 註5:大王具足蟲屬(Bathynomus)是漂水蝨科的一個屬,其下有近 20 種生物,生活於大西洋、太平洋和印度洋的冰冷深海中。最著名的是大王具足蟲,該生物常被稱為最大的等足目生物。大具足蟲(Bathynomus doederleinii)是大王具足蟲屬中的另一類。

想要和新八一樣,品嘗酸酸甜甜的初戀滋味嗎?那麼別猶豫,等吧!在天時地利人和的那一天,你和心目中的男/女神將在餐桌上相會。

圖/silversoulconfessions.tumblr

參考資料:

  1. Charles Wyville Thomson, wikipedia
  2. Bathynomus Giganteus: Terrifying Sea Beast Hauled Up
  3. Giant Isopod Photos Showing This Deep Sea Scavenging Crustacean
  4. Arthropod, wikipedia
  5. 大王具足蟲,維基百科
  6. Arthropod leg, wikipedia
-----廣告,請繼續往下閱讀-----
文章難易度
Lea Tang
20 篇文章 ・ 9 位粉絲
徜徉在極北之海的浪漫主義者。 喜歡鯨豚、地科、文學和貓。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

5
2

文字

分享

2
5
2
從基隆進港的深海活化石中,意外發現新種具足蟲!——專訪國立臺南大學副教授黃銘志
Heidi_96
・2022/11/29 ・3890字 ・閱讀時間約 8 分鐘

新種具足蟲,發現!

2019 年,國立臺南大學生物科技學系副教授 黃銘志 從基隆漁民手中獲得一批具足蟲。為了鑑定這些小傢伙的種類,黃銘志從日本換來兩隻大王具足蟲(B. giganteus),沒想到卻意外發現前所未見的新種——猶加敦具足蟲(B. yucatanensis)!

這到底是怎麼回事呢?別急,在我們看下去前,先告訴你一個具足蟲的小秘密。

具足蟲又稱為深水蝨,是居住在深海的甲殼類活化石。你可能沒聽過這兩個名稱,但如果你看過《風之谷》或是《星際大戰》(Star Wars),肯定對王蟲和黑武士有印象,而他們的原型就是具足蟲!

在宮崎駿動畫《風之谷》中,王蟲是守護腐海的生物。當他們憤怒時,眼睛會由藍轉紅。圖/スタジオジブリ
《星際大戰》系列電影的角色——黑武士的面具原型也是具足蟲!圖/Star Wars

既然不小心撈到了,那就抓來研究吧~

小秘密說完了,讓我們原地跳一下,回到 2019 年看看事情發生的經過。

-----廣告,請繼續往下閱讀-----

當年七月,黃銘志在基隆正濱漁港採集到俗稱「金絲猴」的紅頭龍蝦,登錄為臺灣新記錄種「海神後海螯蝦(Metanephrops neptunus)」。此後,黃銘志就有和當地漁民保持聯繫。

臺灣新記錄種「海神後海螯蝦(Metanephrops neptunus)」。圖/TaiBNET

後來,有船長告訴黃銘志:「我抓到十隻具足蟲,你要不要?」

在基隆,具足蟲的漁獲量並不多,通常是拖網捕蝦附帶的戰利品。雖然東北角有很多販售具足蟲料理的店家,具足蟲吃起來也像龍蝦,但民眾還是喜歡吃真正的蝦子,所以具足蟲銷不出去,黃銘志就整批買了下來。

這時,問題來了!臺灣沒有具足蟲專家,而黃銘志本身也不是分類學家,要怎麼鑑定呢?沒辦法,只好自行摸索。

-----廣告,請繼續往下閱讀-----

於是,黃銘志和日本新江之島水族館交換兩隻大王具足蟲,但這兩隻越看越不對勁,「⋯⋯怎麼其中一隻腰身比較細?難道是牠比較瘦、吃比較少嗎?」

「背景不同的人,就會用不同的視角看事情!」

後來,黃銘志想起赴日深造時,研究魚類基因演化、解析人體基因結構的經驗,就決定分析具足蟲的基因。從黃銘志的專業背景——分子生物學的角度來看,至少要採用兩種分析方法才夠,因為每個基因演化速度都不同,像具足蟲演化得很慢,基因差異不太明顯,就很難區分。

經過細胞色素 c 氧化酶亞基 1(COI)和 16S rRNA 分析後,黃銘志赫然發現很多 DNA 片段都不同。起初還以為是分析出錯,或是樣本破損,但重複試驗多次後的結果都一樣,黃銘志不禁感到困惑:「奇怪了,歐美研究大王具足蟲長達 140 年,有超過 1000 隻樣本,怎麼沒發現裡面可能有基因結構不同的個體?」

細胞色素 c 氧化酶亞基 1(COI)分析結果:第一行是猶加敦具足蟲,第二行是大王具足蟲。圖/Journal of Natural History
 16S rRNA 分析結果:第一行是猶加敦具足蟲,第二行是大王具足蟲。圖/Journal of Natural History

為了進一步梳理這些數據,黃銘志找來兩位分類學家助拳,一位是日本國際螯蝦學會的會長——甲殼類專家川井唯史(Dr. Kawai Tadashi),另一位則是澳洲昆士蘭博物館的無脊椎動物榮譽研究員——具足蟲專家尼爾.布魯斯(Dr. Niel L. Bruce)

-----廣告,請繼續往下閱讀-----

不是這個專業,所以才能做到這件事

在三人正式合作前,黃銘志就大致完成這篇新種具足蟲的論文了,但後來,布魯斯發現了一個天大的錯誤,那就是黃銘志引用了某位印度專家錯誤的研究。

過去,也有中國學者引用這篇印度論文,指出印度洋海域有肯氏具足蟲(B. kensleyi)。黃銘志原先也以為是這樣,畢竟順著前人的研究比較不會有爭議,沒想到卻因此得出錯誤的推論。

第一次研究具足蟲,就要指正其他專家的研究,「老實說,我算哪根蔥?」黃銘志苦笑道。

為了修正錯誤,具足蟲的細部結構就交給布魯斯研究,再讓川井逐一比對、鉅細靡遺地畫下來。具足蟲演化較慢,所以每一種長得都很像,必須仔細觀察才能看出差異,比如鼻子的形狀、尾扇棘刺的數量、身體兩側的彎曲程度等等。

詹姆斯具足蟲(B. jamesi)和猶加敦具足蟲(B.yucatanensis)的身體(a)、頭部(b)、鼻子(c)和頭部側視圖(d)。圖/Journal of Natural History

雖然三人至今都沒有見過彼此,但當初為了辨別出不同的形態,他們互相傳了上千封信討論,才終於達成共識。回想這漫長的過程,黃銘志說:「那些圖都確認過十幾次了,意見不合也是常有的事,比如尾扇棘刺的數量要從哪裡開始數?」

-----廣告,請繼續往下閱讀-----

黃銘志也提到,每種生物都有「種間變異」和「種內變異」。只要有變異,一定有不同的地方,但這些不同的地方可以直接判斷成不同種嗎?假如尾扇棘原本有 13 根,卻因為互相打鬥而斷了一兩根,是不是就要分成不同種?

詹姆斯具足蟲(B. jamesi)和猶加敦具足蟲(B.yucatanensis)的尾扇棘(c)。圖/Journal of Natural History

在這種情況下,由於形態非常接近,按照傳統分類學的做法,其實很容易將一整群可能摻雜不同種的樣本全都混為一類。因此,黃銘志認為最好的做法是從基因著手,用分子生物學的方法鑑定,而不是用個體的外觀差異判斷。

當分類學家多次比對不同樣本的外形,認為這不是大王具足蟲,而基因定序的結果也和資料庫既有的物種都不匹配的時候,就可以確認牠是未經發表的新種。

延伸閱讀:新種形成——秘中之秘

根據論文發表的結果,黃銘志最後將來自新江之島水族館的新種,以發現地墨西哥灣猶加敦半島(Yucatán Peninsula)為依據,命名為猶加敦具足蟲(B.yucatanensis)。

-----廣告,請繼續往下閱讀-----

鑑定深海物種,有助於我們更認識深海

在十八、十九世紀時,科學家非常好奇深海到底有沒有生物,而如今,具足蟲就是活生生的鐵證,因此歐美國家非常重視具足蟲的學術價值。這些深海小傢伙證明了一件事:即使在光線微弱、水壓極高、溫度極低、幾乎沒有食物的環境下,還是有生物存在。

目前,我們對於月球的了解甚至還比深海多。布魯斯表示,陸生生物即使雜交,只要能產生有生殖能力的後代,原則上都可以算是同種,但水生生物並不完全遵循這個原則。

比方說,現在有很多鱘龍魚是雜交種,而且是不同種交配生下的、具有生殖能力的後代,這些不同的後代,都各自稱得上是新物種。按照這個邏輯,海洋時刻都有新物種誕生,是我們探索不完的神秘區域。

本篇論文的第三作者:尼爾.布魯斯。圖/ResearchGate

不過,相對於西方國家多半將具足蟲作為研究用途,東方國家比較在乎的反而是「這可以吃嗎?要怎麼料理才能變得更好吃?」

-----廣告,請繼續往下閱讀-----

在日本,有一種零食就是將具足蟲磨成粉後加進仙貝,讓仙貝吃起來有蝦子的味道。黃銘志笑著說:「這很暢銷!」但也補充道,他在東京大學做研究時,實驗室有個傳統,那就是「當你研究某種生物的時候,你就不吃牠們,代表你對這種生物的敬意。」

關於具足蟲,還有哪些待解之謎?

這份耗時三年的研究,不但指正了前人的研究、改變了具足蟲近百年來的分類,也暗示著既有的「群模式樣本」或許有很大的問題。換句話說,目前已知的具足蟲種類不多,可能是分類錯誤造成的結果,說不定早就有很多種摻雜在其中了!

延伸閱讀:怎麼把牠們當成一樣的物種!物種分類出錯怎麼辦?——分類學家偵探事件簿(三)

在日本,鳥羽水族館有一隻具足蟲長達五年沒進食。目前仍沒有科學家著手細探背後的原因,而牠們的食物來源、繁衍方法,以及牠們如何在極端惡劣的深海環境生存,都是接下來必須進一步探究的課題。

舉例來說,紅色在深海是一種隱性色,而深海的甲殼類生物(比如甜蝦、天使紅蝦)體內通常帶有蝦紅素,使得體表呈現紅色,可以保護牠們不被天敵發現。可是,具足蟲的分布範圍深達數千米,體內卻沒有蝦紅素,煮熟後也不會像蝦子那樣變紅。

-----廣告,請繼續往下閱讀-----

延伸閱讀:煮熟的龍蝦為什麼會變色呢?

此外,透過研究具足蟲,科學家可以更了解全球暖化對深海的影響、陸地上的重金屬和放射性物質沉進深海造成的衝擊,以及這些具足蟲是否可以取代龍蝦,成為新的食物選擇。

最近,南海的船長捕到了 80 幾隻具足蟲,黃銘志買下了形態看起來比較特殊的 10 隻,希望可以篩出更多新種,解開更多有趣的謎底。

延伸閱讀

參考資料

  1. Huang, M. C., Kawai, T., & Bruce, N. L. (2022). A new species of Bathynomus Milne-Edwards, 1879 (Isopoda: Cirolanidae) from the southern Gulf of Mexico with a redescription of Bathynomus jamesi Kou, Chen and Li, 2017 from off Pratas Island, Taiwan. Journal of Natural History, 56(13-16), 885-921.
  2. 交換日本水族館具足蟲 南大發現深水蝨新物種|生活|中央社 CNA
-----廣告,請繼續往下閱讀-----
所有討論 2

0

1
0

文字

分享

0
1
0
2020世界地球日,一起玩 Google doodle 遊戲學蜜蜂小知識!
PanSci_96
・2020/04/22 ・1366字 ・閱讀時間約 2 分鐘 ・SR值 527 ・七年級

玩過今天的 Google Doodle 了嗎?為了慶祝世界地球日 50 週年,Google Doodle 以蜜蜂 (bee) 做為遊戲主角,讓大家體驗沾花粉與授粉的過程,並提供關於蜜蜂的小知識,就讓我們來了解一下吧!

大眼瞪小眼,此眼非彼眼

蜜蜂具有一對複眼 (compound eyes) 與三個小小的單眼 (ocelli)。其中,位於頭部兩側、又大又明顯的複眼是由許多的「小眼」(ommatidia) 單元所組合而成,每一個小眼上都具有角膜鏡 (corneal lens) 和晶錐 (crystalline cone),能夠將光線集中並聚焦在數個延長、環狀排列的網膜細胞 (retinula cell) 上,而在小眼的中央則具有能夠接受光的感桿 (rhabdom) 構造。

由於小眼環狀排列的一叢視網膜細胞外圍被一圈吸光的色素細胞(pigment cell)所包圍,導致每個小眼獨立成像,並與相鄰的小眼分開來,而當所有小眼的影像加在一起時則可提供全景式的影像,便是所謂的聯立影像眼 (apposition eyes)。

圖/slideplayer, after Snodgrass, 1935 / Wilson, 1978 / CSIRO, 1970 ; Rossel, 1989

-----廣告,請繼續往下閱讀-----

至於在頭頂上、複眼之間則具有排列成三角形的三個小單眼,其最外層的透明表皮覆蓋在同樣透明的真皮細胞上,因此光線可以透過去並到達由許多感桿組成的網膜細胞上,然而由於進入單眼的光線聚焦在感桿之後,所以視網膜只能接收到模糊的影像

單眼主要會整合大視野範圍的光線,對低強度的光或光的細微改變相當敏感,但並不具有高解析力,故通常作為飛行時控制上下左右搖擺的水平儀,和記錄與白晝行為節律相關的光強度週期變化。

女王大人高高在上

真社會性 (Eusociality) 高度發展的蜜蜂蜂群中通常會有蜂后 (queen)、工蜂 (worker)、雄蜂 (drone) 三個角色。蜂后與工蜂皆為雌性,蜂后體型較大,能夠產卵甚至抑制其他工蜂的生殖能力;而工蜂則負責建造蜂巢蜂室、搜尋獵物、守衛蜂巢與餵食幼蟲,至於雄蜂則會與蜂后交配,提供精子,由於其交尾器會在交尾後撕裂,雄蜂便會因而死亡。

圖/IRISH BEEKEEPERS ASSOCIATION CLG, after Winston, 1987

-----廣告,請繼續往下閱讀-----

誰知盤中飧,蜜蜜皆辛苦

外出的工蜂會採集花蜜,並將其收集在腸胃 (proventriculus or honey stomach) 當中。當工蜂回巢後,便會將花蜜吐出 (regurgitate) 並傳給內勤的工蜂,接著內勤的工蜂便會將花蜜消化並反覆的吸入再吐出,製造泡泡來增加表面積,好讓原先花蜜中高達 70~80% 的水分能夠慢慢蒸發,並藉由消化酵素將蔗醣水解為葡萄醣與果醣,同時分解掉其他澱粉與蛋白質,增加酸度。之後便會將蜂蜜存於巢中,藉由巢中的高溫與搧風,使得水分降低至 18% 左右,讓糖份濃度過飽和而能避免發酵 (fermentation) 後,便會以蜂蠟封存起來。

圖/Pixabay

除了上述以外,Google Doodle 還提供了更多有關蜜蜂本身的知識,以及蜜蜂對自然生態的不可或缺,像是全世界有三分之二的農作與 85% 的開花植物都需要仰賴他們授粉,以及蜜蜂被科學家視為關鍵物種 (keystone species),如果沒有他們的存在則可能整個生態系統將徹底崩潰等等,可見其無可取代的重要性。

那麼,在世界地球日 50 周年的今天,你對維持生態的蜜蜂們更加了解了嗎?

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----
OSZAR »